

Fructose-1, 6-diphosphate (FDP) Activity Assay Kit

Note: Take two or three different samples for prediction before test.

Operation Equipment: Spectrophotometer/ Microplate reader

Cat No: AK0239 Size:100T/48S

Components:

Extract solution I: Liquid 60 mL×1. Store at 4°C .

Extract solution II: Liquid 10 mL×1. Store at 4°C .

Reagent I: 10 mL $\times 1.$ Store at 4°C .

Reagent II: 10 μ L×1×1. Store at 4°C . Dissolve with 0.209 mL of distilled water before use. Unused reagent can store at 4°C for one week.

Reagent III: 7 mL $\times 1.$ Store at 4°C .

Reagent IV: 20 mL×1. Store at 4°C.

Standard: Powder×1. Store at 4°C . Dissolve with 1.176 mL of distilled water before use to form 50 $\mu mol/mL$ FDP standard solution

Product Description:

Fructose- 1,6-diphosphate (FDP) is an important intermediate product in the glycolysis process. It can regulate a variety of enzymes, improve cell energy metabolism, increase energy utilization, anti-arrhythmia and anti-tissue peroxidation. FDP is widely used in clinical medicine.

Aldolase catalyzes the cleavage of fructose 1,6-diphosphate. The product reacts with 2,4dinitrophenylhydrazine in acid medium to form 2,4-dinitrophenylhydrazone, which is dark red in alkaline solution and has a characteristic absorption peak at 540 nm.

Reagents and Equipment Required but Not Provided:

spectrophotometer/Microplate reader, desk centrifuge, adjustable transferpettor, water bath /incubator, micro glass cuvette/ 96 well flat-bottom plate, mortar / homogenizer, ultrasonic crusher, ice and distilled water.

Procedure:

I. Sample preparation:

1) Tissue

According to the tissue weight (g): the volume of the extract (mL) is $1:5 \sim 10$. Suggest adding 1 mL of Extract solution I to 0.1 g of tissue, fully homogenize on ice bath. Centrifuge at $12000 \times g$ for 10 minutes at 4°C. Take 0.8 mL of supernatant and 0.16 mL of Extract solution II to mix well, centrifuge at $12000 \times g$ for 10 minutes at 4°C. Then take supernatant for test.

2) Bacteria or cells

According to the Bacteria or cells (10⁴): the volume of the extract (mL) is 500~1000:1. Suggest add 1mL of Extract solution to 5 million of bacteria or cells. Use ultrasonication to splitting bacteria and cells (placed on ice, ultrasonic power 300W, working time 3 seconds, interval 7 seconds, total time for 3 min). Centrifuge at 12000 ×g for 10 minutes at 4°C. Take 0.8mL supernatant and 0. 16mL Extract solution II to mix well, centrifuge at 12000 ×g for 10 minutes at 4°C. Then take supernatant for test.

3) Liquid:

Add 1 mL of Extract solution I to 100 μ L liquid sample, centrifuge at 12000×g for 10 minutes at 4°C. Take 0.8mL supernatant and 0. 16mL Extract solution II to mix well, centrifuge at 12000×g for 10 minutes at 4°C. Then take supernatant for test.

II. Determination procedure:

1. Preheat spectrophotometer/microplate reader for 30 minutes, adjust the wavelength to 540 nm, set zero with distilled water.

2. $50 \mu mol/ml$ fructose- 1,6-diphosphate standard solution is diluted to 3. 125, 1.5625, 0.78125, 0.39, 0.2 and 0. $1\mu mol/ml$ standard solution with distilled water.

Reagent name (µL)	Control tube (A _C)	Test tube (A _T)	Blank tube (A _B)	Standard tube (As)	
Sample	20	20	_	_	
Distilled water	_	-	20	20	
Standard solution			_	20	
Reagent I	44	44	44	40	
Reagent II	-	4	_	4	
Mix well, react accurately at 37°C for 2 h					
Reagent III	40	40	40	40	
Mix well, react accurately at 37°C for 20 min					
Reagent IV	100	100	100	100	
Mix well, react accurately at 37°C for 10 min					

3. Sampling table:

The absorbance value at 540 nm is measured in 1 mL glass cuvette and recorded as A_C , A_T , A_B , A_S , respectively. Calculate $\Delta A = A_T - A_C$, $\Delta A_S = A_S - A_B$. The blank tube only needs to be tested 1-2 times.

III. Calculation:

1. According to concentration of standard solution and ΔA_S to create the standard curve, take standard solution as X-axis, ΔAs as Y-axis. Take ΔA into the equation to obtain x (µmol/ml).

2. Calculation:

(1) sample weight

FDP (mg/g fresh weight) = $x \times (V_{su} + V_{exII}) \times M \div (W \times V_{su} \div V_{exI}) = 408x \div W$

(2) The number of bacteria or cells

FDP (mg/10⁴ cell) = $x \times (V_{su} + V_{exII}) \times M \div (cell \text{ amount } \times V_{su} \div V_{exI}) = 408x \div cell \text{ amount}$

(3) Liquid:

FDP (μ mol/mL) = x×(V_{su}+ V_{exII})÷(V_L×V_{su}÷(V_{exI}+ V_L)) =13.2x

 $\label{eq:Vsu} \begin{array}{l} V_{su} \colon Supernatant \ volume \ of \ extraction \ , \ \ 0.8mL \\ V_{exII} \colon Extract \ solution \ II \ volume, \ 0. \ 16mL \\ M \colon Molecular \ weight \ of \ fructose- \ 1,6-diphosphate,340 \\ V_{exI} \colon Extract \ solution \ I \ volume, \ 1mL \\ W \colon sample \ weight, \ g \\ Cell \ amount \colon 10 \ thousand \ cells \ as \ unit \\ V_L \colon \ liquid \ sample \ volume, \ 0. \ 1mL. \end{array}$

Note:

1. If $\Delta A > 0.5$, please dilute the sample with water to appropriate concentration, multiply dilute times in the formula.

Related Products:

AK0238/AK0237	Fructose-bisphosphate aldolase(FBA) Activity Assay Kit
AK0394/AK0393	Phosphoglycerate Kinase(PGK) Activity Assay Kit